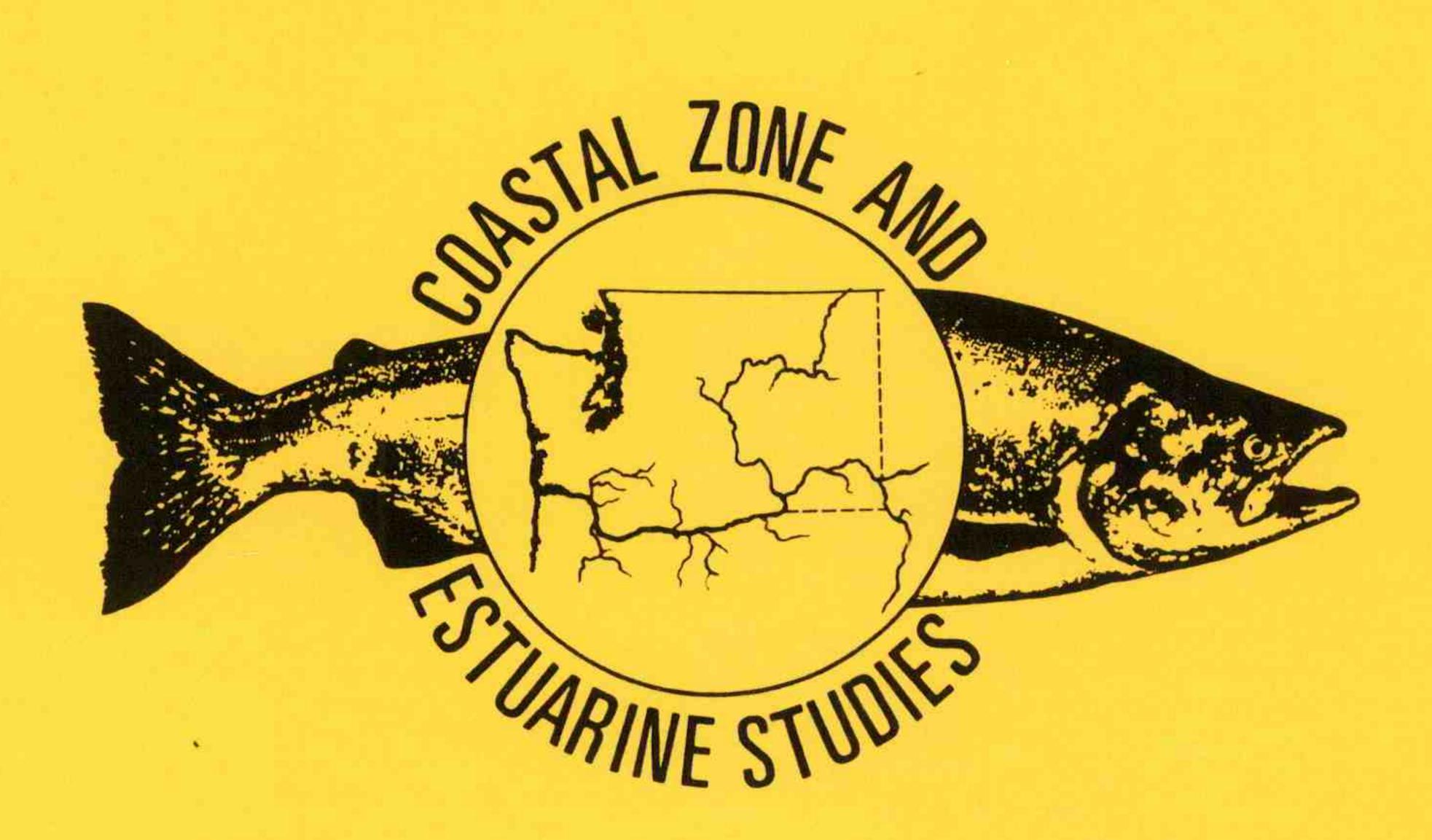
SH153 .Un516 1992

Benthic Invertebrates and Sediment Characteristics in Subtidal Habitat at Rice Island, Columbia River Estuary, December 1991 and March 1992

Northwest & Alaska Fisheries Center

Northwest & Alaska Fisheries Service


NOAA, Nacional Marine Fisheries Service

Susan A. Hinton,

Robert L. Emmett,

and George T. McCabe, Jr.

October 1992

BENTHIC INVERTEBRATES AND SEDIMENT CHARACTERISTICS

IN SUBTIDAL HABITAT AT

RICE ISLAND,

COLUMBIA RIVER ESTUARY,

DECEMBER 1991 AND MARCH 1992

by

Susan A. Hinton
Robert L. Emmett
and
George T. McCabe, Jr.

Final Report

Funded by

U.S. Army Corps of Engineers
Portland District
P.O. Box 2946
Portland, Oregon 97208
(Contract E96920018)

and

Coastal Zone and Estuarine Studies Division
Northwest Fisheries Science Center
National Marine Fisheries Service
National Oceanic and Atmospheric Administration
2725 Montlake Boulevard East
Seattle, Washington 98112

October 1992

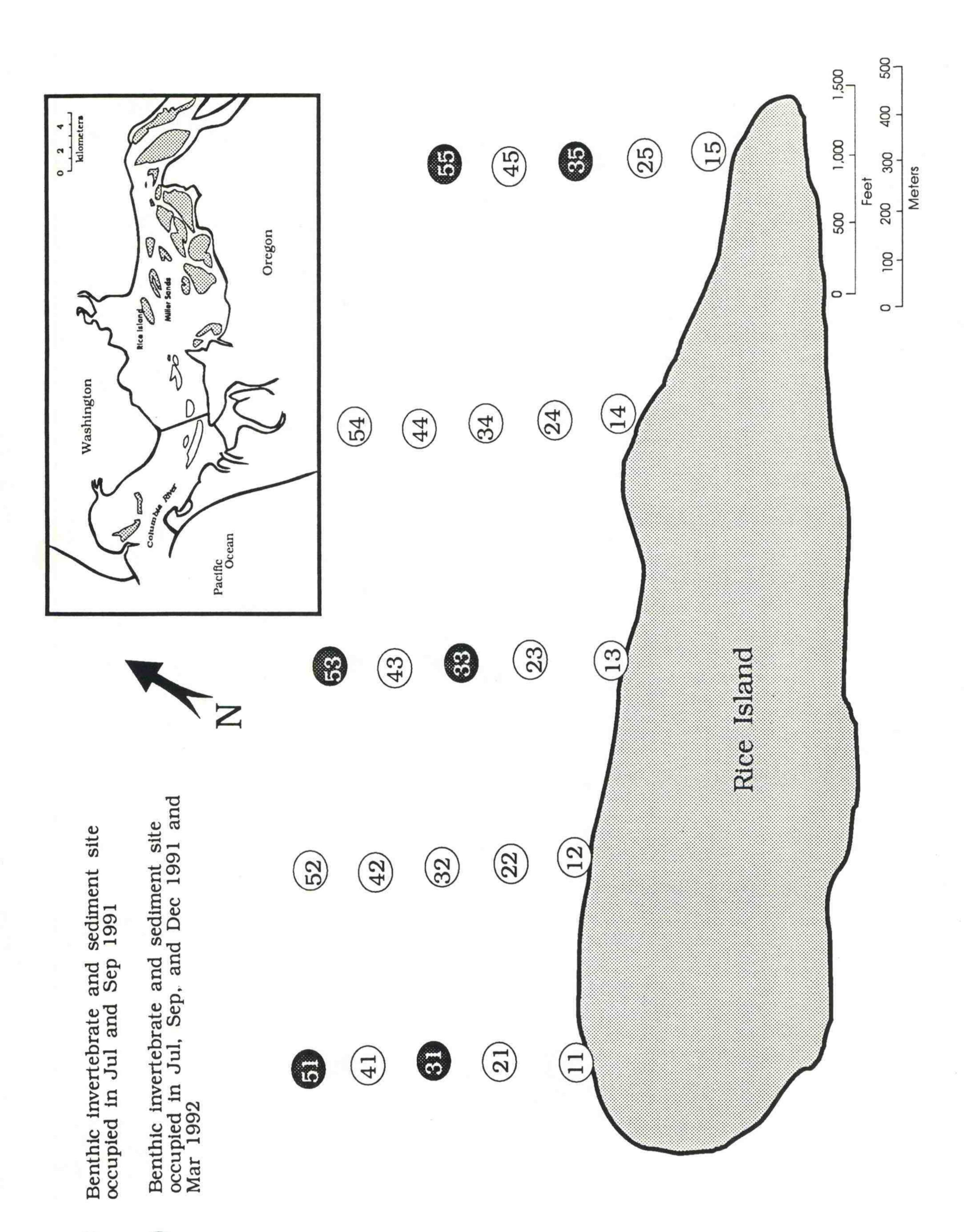
CONTENTS

																							Page
INTRODUCT	ION		•	•	•	•	•	•	•	•	•	•	•	y. ě	•	•	٠	•	•	×		⊕ 01	1
METHODS .	•	• •	•	•	•	•	•	•	•	•	•		•	•	•	•	٠	•	•		•	• 2	2
Samp	ling		•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	٠	•)	•	•	•	2
Data	Anal	yse	S	● 12	•	• 8	· •	•	•	•	*	•	•	•	•	•	•	•	•	•	•	•	5
	Bent	hic	II	nve	ert	ek	ora	ate	es		•		•	•	3 0 .1	•	•		• 17	•	•		5
	Sedi	men	ts	•	•	•	•	•	•	•	•	•	•	•	•		•	•		•	•		5
RESULTS .	•		•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	6
Benth	nic I	nve	rte	ebi	rat	es	3	•	•	•	•	•	•	•	•			•	•	•	•	•	6
Sedin	nents	3	•	•	:•:	•		•:	H•	•		•	•1)	•	:•::	::•	•	•	·•	•	•	•	8
DISCUSSION	1 .	• •	٠	•3	•	•	•	•	•	•	ı.	•	•	•	•	•	•	•	•	•	•		8
ACKNOWLED	SMENI	rs .	•	•:	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	12
LITERATURE	E CII	ED	•		•	•:	•	•	•	•	::•	•	•:	•	*	•	•	•	•	•	•	1 💌	14
APPENDIX						1	, ž		.2				2					<u>.</u>					1.5

INTRODUCTION

The U.S. Army Corps of Engineers (COE) Portland District is responsible for annually dredging and disposing of more than 2 million yd3 (1.5 million m3) of bottom sediments from the navigation channel between River Miles (RM) 4.4 and 28.8 in the Columbia River estuary. Existing island and shoreline dredgedmaterial disposal sites are nearly filled to capacity, and options for new disposal sites for such large volumes of dredged material are extremely limited. One potential disposal site is the area just north of Rice Island, an island created with dredged material. Proposals for expanding Rice Island with dredged material include creating a 10,000-ft (3,048-m) by 500to 1,000-ft (152- to 305-m) spit to the north of the present island. The south side of the proposed spit would be about 1,000 ft from the island, creating an island-spit configuration similar to that at Miller Sands, which is slightly upstream from Rice Island.

Major concerns associated with new dredged-material disposal sites, especially when creating islands, are the effects of such activities on aquatic communities. Therefore, in 1991, the COE contracted the National Marine Fisheries Service (NMFS) to conduct surveys in July and September to assess the aquatic communities just north of Rice Island and at Miller Sands (Hinton et al. 1992). Subsequently, the COE contracted NMFS to conduct two additional but limited benthic surveys at Rice Island in December 1991 and March 1992. Data from the two limited surveys


are presented in this report, which supplements the initial report (Hinton et al. 1992).

METHODS

Benthic invertebrate and sediment samples were collected at six previously established stations in the subtidal area north of Rice Island in December 1991 and March 1992 (Fig. 1). These stations were reoccupied using the Global Positioning System (see Appendix Table 1 for station locations).

Sampling

Eleven core samples were taken at each station with a polyvinyl chloride (PVC) coring device with an inside diameter of 3.85 cm and a penetrating depth of 15 cm, and which collected a 174.6-cm³ sample (Fig. 2). Samples were collected by scuba divers since all stations were subtidal. Ten core samples were placed in labeled jars and preserved in a buffered formaldehyde solution (≥4%) containing rose bengal, a protein stain. In the laboratory, samples were washed with water through a 0.5-mm screen. All invertebrates were sorted from the preserved sample, identified to the lowest practical taxonomic level (usually species), and counted. The specimens were then stored in labeled vials containing 70% ethyl alcohol. The eleventh core sample was saved in a labeled plastic bag and refrigerated for analysis of sediment grain size and total volatile solids by the COE North Pacific Division Materials Laboratory, Troutdale, Oregon.

ng ia

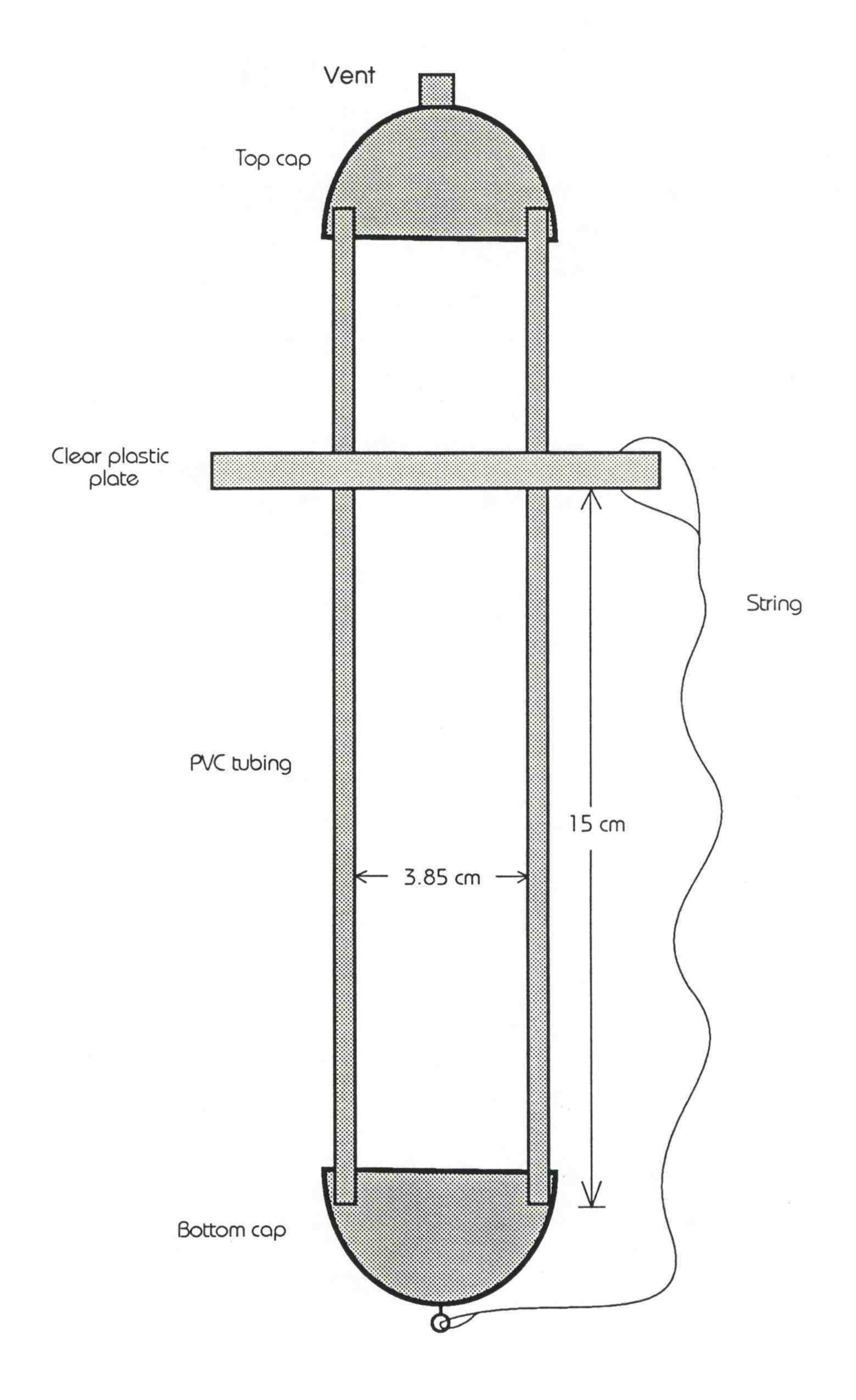


Figure 2.--PVC coring device used to collect benthic invertebrate and sediment samples in the Columbia River estuary.

Data Analyses

Benthic Invertebrates

The 10 benthic invertebrate replicates from each station allowed calculation of a mean number/ m^2 and standard deviation for each species, and total mean number/ m^2 and standard deviation for each station.

Two community structure indices, diversity and equitability, were calculated for each sampling station. Diversity was calculated using the Shannon-Wiener function (H) (Krebs 1978).

$$H = -\sum_{i=1}^{s} (p_i) (log_2p_i)$$

where $p_i = Xa/n$ (Xa is the number of individuals of a particular species in the sample, and n is the total number of all individuals in the sample) and s = number of species. Equitability (E), the second community structure index, measures the proportional abundances among the various species in a sample (Krebs 1978). E ranges from 0.00 to 1.00, with 1.00 indicating all species in the sample are numerically equal.

$$E = H/log_2s$$

where H = Shannon-Wiener function and s = number of species.

Sediments

Median grain size (mm), percent silt/clay, and percent volatile solids were calculated for each station.

RESULTS

Benthic Invertebrates

For December 1991, 11 benthic invertebrate taxa were identified at the six stations at Rice Island. Benthic invertebrate densities at all stations exceeded 117,000 organisms/m² with the exception of Station 33 (3,866 organism/m²) (Table 1, Appendix Table 2). The highest density was 199,458 organisms/m² at Station 51. Diversity ranged from 0.73 (Station 51) to 1.60 (Station 33). Equitability ranged from 0.26 (Station 51) to 0.80 (Station 33) but was usually 0.40 or less. The lower diversity values resulted from fewer taxa or low equitability (i.e., unequal proportional abundances among the taxa). The higher equitability value at Station 33 indicated the taxa were more equally distributed.

For March 1992, 11 invertebrate taxa were identified at Rice Island. Benthic invertebrate densities ranged from 2,319 organisms/m² (Station 33) to 182,879 organisms/m² (Station 53). Most stations exceeded 130,000 organisms/m² (Table 1, Appendix Table 2). Diversity ranged from 0.81 (Station 53) to 1.52 (Station 55) and equitability ranged from 0.33 (Station 31) to 0.66 (Station 55). Overall, diversity and equitability values in March were low, indicating few taxa and the unequal proportional abundances of these taxa.

The amphipod <u>Corophium salmonis</u> was the dominant benthic invertebrate at Rice Island during the December 1991 and March 1992 surveys, comprising 82 and 80% of the total number of

Table 1.--Summary of benthic invertebrates at Rice Island,
Columbia River estuary, December 1991 and March 1992.

Depths are corrected to mean lower low water.

Station	Depth (m)	Number of taxa	Number /m²	Standard deviation	Diversity (H)	Equitability (E)
			DECEMBE	R 1991		
31	0.4	7	140,531	28,685	1.13	0.40
51	3.0	7	199,458	61,261	0.73	0.26
33	3.5	4	3,866	3,394	1.60	0.80
53	1.7	6	117,682	42,841	0.79	0.30
35	3.3	8	162,091	44,308	1.08	0.36
55	2.4	5	177,639	36,585	0.90	0.39
			MARCH	1992		
~ -	0 1	8	130,996	22,124	1.00	0.33
31	0.4	8	158,054	24,780	1.13	0.38
51	3.0	5	2,319	1,571	1.26	0.54
33	3.5	5	182,879	26,989	0.81	0.35
53	1.7 3.3	8	181,934	33,003	1.07	0.36
35 55	2.4	5	10,050	2,657	1.52	0.66

organisms per survey (Table 2). Other abundant taxa found in the study area were Turbellaria, Oligochaeta, the bivalve <u>Corbicula</u> fluminea, and Heleidae (Ceratopogonidae) larvae.

Sediments

The dominant median grain size in the Rice Island study area during December 1991 and March 1992 was fine sand (0.125 to <0.25 mm in diameter) (Table 3). Very fine sand (0.0625 to <0.125 mm in diameter) occurred at Stations 31 and 51 in March 1992. The amount of silt/clay for each station ranged from 0.0 (Station 33) to 14.5% (Station 51) during the two surveys. Percent volatile solids per station for both surveys was never greater than 1.7%, and usually 1.0% or less.

DISCUSSION

Benthic invertebrate densities at Stations 31, 51, 53, 35, and 55 in December 1991 and Stations 31, 51, 53, and 35 in March 1992 at Rice Island were the highest ever reported in the estuary. Generally, benthic invertebrate densities in December 1991 and March 1992 were much higher than densities at the same stations in July and September 1991 (Fig. 3; Hinton et al. 1992). The dramatic increase in abundance of Corophium salmonis numbers was the cause of the incredibly high invertebrate densities in the area. Peak densities of C. salmonis typically occur during December through March (Emmett et al. 1986).

In three out of the four surveys, benthic invertebrate densities were the lowest at Station 33 (Fig. 3). In addition,

Table 2.--Abundance of major benthic invertebrate taxa at Rice Island, Columbia River estuary, December 1991 and March 1992. All values are mean numbers/m²; data from six stations were combined for each survey.

Taxon		Dec 91	Mar 92
Turbellaria		11,654	7,101
Oligochaeta		7,817	10,938
Polychaeta <u>Neanthes</u> <u>limnicola</u>		115	158
Bivalvia <u>Corbicula fluminea</u>		1,847	2,849
Ostracoda		29	200
Amphipoda <u>Corophium salmonis</u> <u>Corophium spinicorne</u>		109,793	88,533 86
Insecta Chironomidae larvae Heleidae larvae Miscellaneous Others		14 2,176 14	29 1,117 14
	Total	133,544	111,039

Table 3.--Sediment characteristics at Rice Island, Columbia River estuary, December 1991 and March 1992. Depths are corrected to mean lower low water.

Station	Depth (m)	Median grain size (mm)	Percent silt/clay	Percent volatile solid
		DECEMBER 1	991	
31	0.4	0.1340	1.3	1.0
51	3.0	0.1340	5.8	1.0
33	3.5	0.2500	0.0	0.5
53	1.7	0.1768	1.6	0.5
35	3.3	0.2176	1.5	0.7
55	2.4	0.2176	1.6	0.8
		MARCH 199	2	
31	0.4	0.1088	7.3	1.0
51	3.0	0.0769	14.5	1.7
33	3.5	0.2500	0.2	0.5
53	1.7	0.1539	10.3	0.7
35	3.3	0.1436	9.5	0.9
55	2.4	0.2333	0.3	0.5

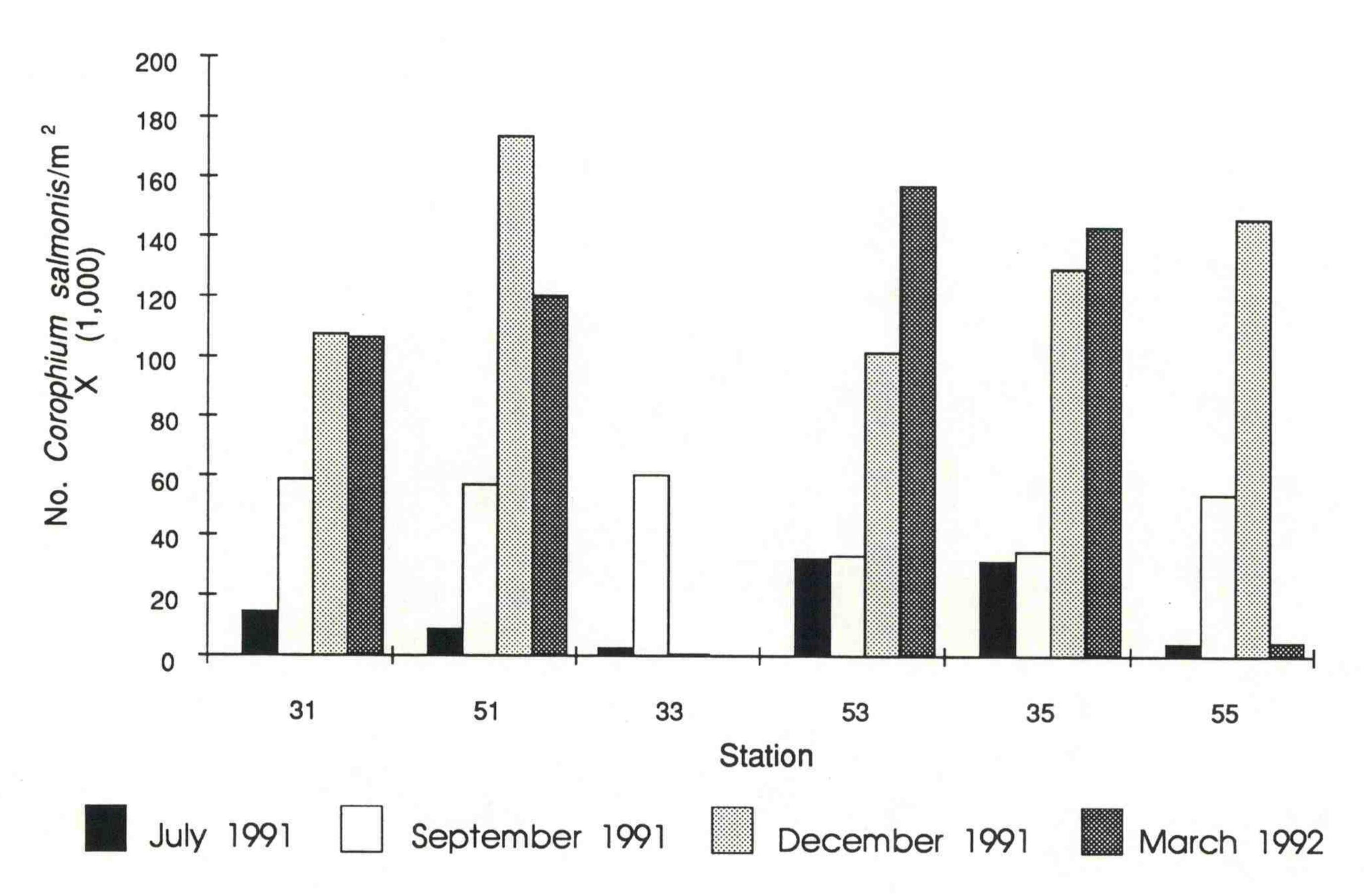


Figure 3.--Mean number of benthic invertebrates/m² and mean number of Corophium salmonis/m² for six stations sampled at Rice Island, Columbia River estuary, 1991-1992.

median grain size was the highest at Station 33 in these three surveys (Fig. 4).

Median grain size and percent volatile solids remained fairly consistent when comparing the six stations occupied in July, September, and December 1991 and March 1992. Percent silt/clay varied more than median grain size or percent volatile solids, but was never exceedingly high (Fig. 4).

This report does not constitute NMFS's formal comments under the Fish and Wildlife Coordination Act or the National Environmental Policy Act.

ACKNOWLEDGMENTS

We thank Loretta Clifford for her assistance in analyzing the biological samples. The COE Portland District conducted the sediment analysis.

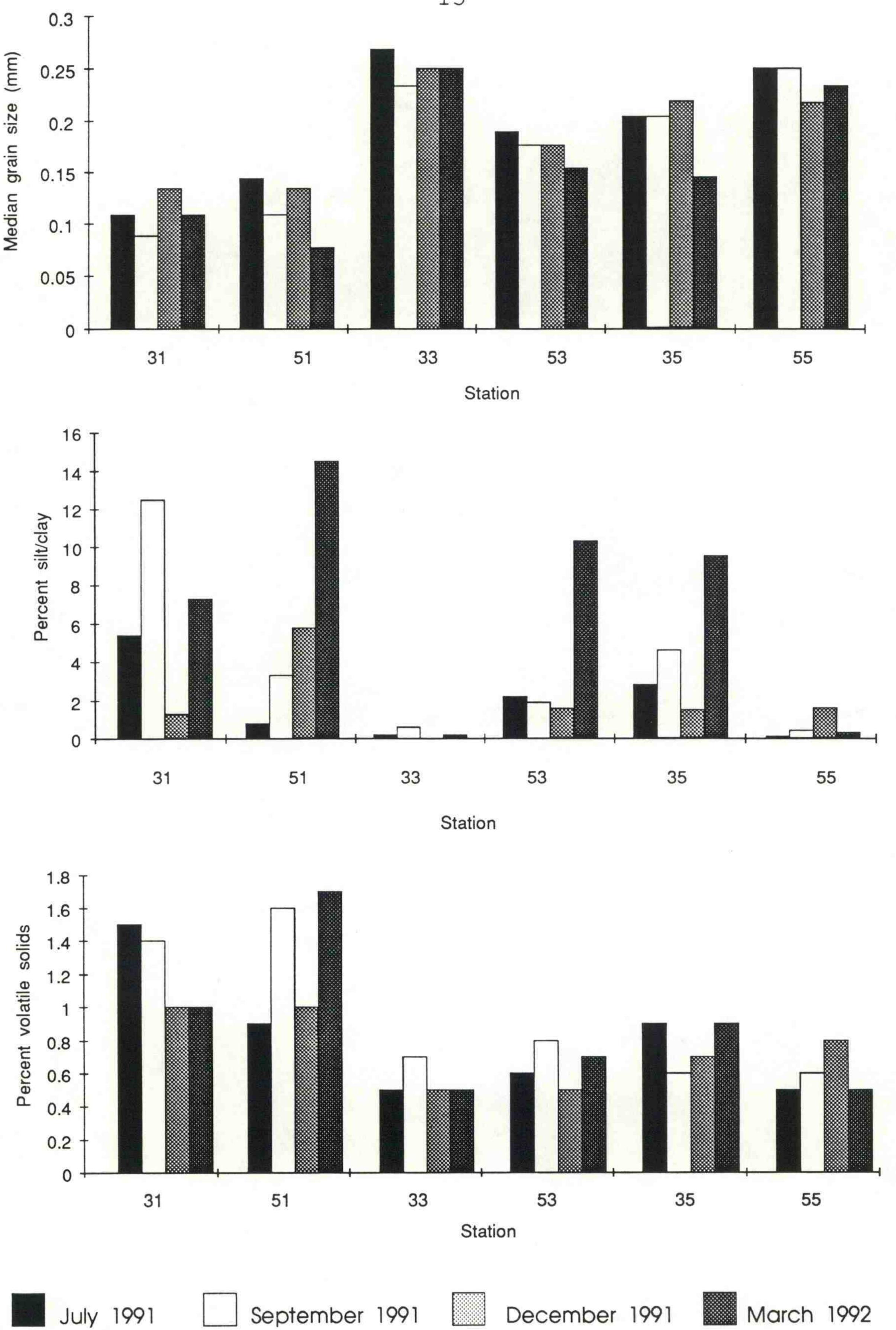


Figure 4.--Sediment characteristics for six stations sampled at Rice Island, Columbia River estuary, 1991-1992.

LITERATURE CITED

- Emmett, R. L., G. T. McCabe, Jr., T. C. Coley, R. J. McConnell, and W. D. Muir.
 - 1986. Benthic sampling in Cathlamet Bay, Oregon--1984.
 Report to U.S. Army Corps of Engineers, Contract
 DACW57-84-F-0348, 11 p. plus appendices. (Available from
 Northwest Fisheries Science Center, 2725 Montlake Blvd. E.,
 Seattle, WA 98112-2097.)
- Hinton, S. A., R. L. Emmett, and G. T. McCabe, Jr.

 1992. Fishes, shrimp, benthic invertebrates, and sediment
 characteristics in intertidal and subtidal habitats at Rice
 Island and Miller Sands, Columbia River estuary. Report to
 U.S. Army Corps of Engineers, Contract E96910025, 53 p.
 (Available from Northwest Fisheries Science Center, 2725
 Montlake Blvd. E., Seattle, WA 98112-2097.)
- Krebs, C. J.

 1978. Ecology: the experimental analysis of distribution and abundance. Harper and Row. New York, NY. 678 p.

APPENDIX

Appendix Table 1.--Station locations at Rice Island, Columbia River estuary, 1991-1992.

Benthic/sediment station	Latitude	Longitude
31	46°15.245	123°43.032
51	15.401	43.150
33	46°15.442	123°42.108
53	15.600	42.194
35	46°15.464	123°41.434
55	15.591	41.550

Appendix Table 2.--Summary of benthic invertebrate surveys (by station) during December 1991 and March 1992 at Rice Island, Columbia River estuary.

Station: 31	Date: 19	Dec 91		Sample siz	e: 10
Taxon		Total	Frequency o occurrence		Standard deviation /m²
Turbellaria		187	100	16,063	6,920
Neanthes limnicola		6	50	515	601
Oligochaeta		159	100	13,658	4,967
Corbicula fluminea		30	100	2,577	2,361
Ostracoda		1	10	86	272
Corophium salmonis		1,252	100	107,546	23,656
Corophium spinicorne		1	10	86	272
H = 1.13 E = 0.40					
Station: 51	Date: 19	9 Dec 91		Sample si	ze: 10
Taxon		Total	Frequency occurrence (%)	1/20	Standard deviation /m²
		116	100	9 961	10,837
Turbellaria		116	100 20	9,964	362
Neanthes limnicola		160		14,431	4,973
Oligochaeta		168	100	1,031	887
Corbicula fluminea		2 020	100	173,516	52,409
Corophium salmonis		2,020		258	415
Corophium spinicorne		3	30	250	410

272

86

Number of taxa:

Ephemeroptera

Standard deviation/sample: Mean number/sample: 232 Standard deviation: 61,261 Mean number/m²: 199,458

H = 0.73 E = 0.26

Station: 33 Date: 19 Dec 91 Sample size: 10

Taxon	Total	Frequency of occurrence (%)	Mean number /m²	Standard deviation /m²
Turbellaria	4	20	344	724
Oligochaeta	10	60	859	992
Corophium salmonis	5	40	430	607
Heleidae larvae	26	70	2,233	2,298

Number of taxa: 4

Mean number/sample: 5 Standard deviation/sample: 4

Mean number/m²: 3,866 Standard deviation: 3,394

H = 1.60 E = 0.80

Station: 53 Date: 19 Dec 91 Sample size: 10

Taxon	Total	Frequency occurren (%)		Standard deviation /m²
Turbellaria	39	90	3,350	2,638
Oligochaeta	114	100	9,793	4,691
Corbicula fluminea	28	90	2,405	2,173
Corophium salmonis	1,182	100	101,533	40,045
Collembolla	1	10	86	272
Heleidae larvae	6	50	515	601

Number of taxa: 6

Mean number/sample: 137 Standard deviation/sample: 50

Mean number/m²: 117,682 Standard deviation: 42,841

H = 0.79 E = 0.30

Station: 35	Date:	19	Dec 91		Sample siz	ze: 10
Taxon			Total	Frequency occurrence (%)		Standard deviation /m²
Turbellaria			206	100	17,695	5,496
Oligochaeta			70	100	6,013	3,265
Corbicula fluminea			34	90	2,921	2,150
Ostracoda			1	10	86	272
Corophium salmonis			1,507	100	129,450	40,974
Corophium spinicorne			1	10	86	272
Heleidae larvae			67	100	5,755	2,397
Chironomidae larvae			1	10	86	272
Number of taxa: 8						
Mean number/sample: Mean number/m ² : 162,09	189			ard deviation		52
Station: 55	Date:	19	Dec 91		Sample siz	ze: 10
Taxon			Total	Frequency occurrence (%)		Standard deviation /m²
Turbellaria			262	100	22,506	13,749
Oligochaeta			25	80	2,148	1,777
Corbicula fluminea			25	90	2,148	1,682
Corophium salmonis			1,703	100	146,286	31,193
Heleidae larvae			53	80	4,553	3,316
Tumber of taxa: 5						
mean number/sample:	207		Stand	lard deviation	on/sample:	43

H = 0.90 E = 0.39

Station: 31 Date: 17 Mar 92 Sample size: 10 Taxon Frequency of Total Mean Standard number occurrence number deviation $/m^2$ (%) $/m^2$ Turbellaria 116 100 9,964 5,436 Oligochaeta 123 10,566 100 4,706 Corbicula fluminea 41 90 3,522 2,235 Ostracoda 40 344 444 Corophium salmonis 1,238 106,343 100 20,371 Corophium spinicorne 10 86 272 Heleidae larvae 10 86 272 Chironomidae larvae 10 86 272 Number of taxa: Mean number/sample: 153 Standard deviation/sample: 26 Mean number/m²: 130,996 Standard deviation: 22,124 H = 1.00 E = 0.33Station: 51 Date: 17 Mar 92 Sample size: 10 Taxon Total Frequency of Mean Standard number occurrence number deviation $/m^2$ (8) $/m^2$ Turbellaria 145 12,455 100 5,284 Neanthes limnicola 70 601 415 Oligochaeta 262 100 22,506 8,482 Corbicula fluminea 16 80 1,374 1,160 Ostracoda 10 859 40 1,215

Number of taxa: 8

Heleidae larvae

Corophium salmonis

Corophium spinicorne

Mean number/sample: 184 Standard deviation/sample: 29
Mean number/m²: 158,054 Standard deviation: 24,780

1,398

100

10

10

120,087

86

86

16,252

272

272

H = 1.13 E = 0.38

Station: 33 Date: 17 Mar 92 Sample size: 10

Taxon	Total	Frequency of occurrence (%)	Mean number /m²	Standard deviation /m²
Turbellaria	1	10	86	272
Oligochaeta	4	40	344	444
Heleidae larvae	20	90	1,718	1,145
Chironomidae larvae	1	10	86	272
Hydracarina	1	10	86	272

Number of taxa: 5

Mean number/sample: 3 Standard deviation/sample: 2 Mean number/m²: 2,319 Standard deviation: 1,571

H = 1.26 E = 0.54

Station: 53 Date: 17 Mar 92 Sample size: 10

Taxon	Total	Frequency occurren (%)	2	Standard deviation /m²
Turbellaria	77	100	6,614	4,688
Oligochaeta	137	100	11,768	4,809
Corbicula fluminea	84	100	7,216	3,781
Corophium salmonis	1,829	100	157,109	22,940
Corophium spinicorne	2	20	172	362

Number of taxa: 5

Mean number/sample: 213 Standard deviation/sample: 31

Mean number/m²: 182,879 Standard deviation: 26,989

H = 0.81 E = 0.35

Sample size: 10 Date: 17 Mar 92 Station: 35 Standard Frequency of Mean Total Taxon deviation number number occurrence $/m^2$ $/m^2$ (왕) 7,224 13,314 100 155 Turbellaria 344 601 30 Neanthes limnicola 5,637 19,929 100 232 Oligochaeta 4,639 3,245 100 54 Corbicula fluminea 32,440 143,280 1,668 100 Corophium salmonis 543 172 10 Corophium spinicorne 362 172 20 Heleidae larvae 272 86 10 Ephemeroptera Number of taxa: Standard deviation/sample: 38 Mean number/sample: Standard deviation: 33,003 Mean number/m²: 181,934 H = 1.07 E = 0.36Sample size: 10 Date: 17 Mar 92 Station: 55

Taxon	Total	Frequency of occurrence (%)	Mean number /m²	Standard deviation /m²
Turbellaria	2	20	172	362
Oligochaeta	6	40	515	724
Corbicula fluminea	4	40	344	444
Corophium salmonis	51	100	4,381	2,122
Heleidae larvae	54	100	4,639	2,333

Number of taxa: 5

Mean number/sample: 12 Standard deviation/sample: Standard deviation: 2,657

H = 1.52 E = 0.66